IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 7, JULY 1991

104¢
. @ Direct Sum
A Shanks' Tx. PY
103
s f °
©
5
Q [ ]
3 1021
[} o
£ *
)_.
c [
o
T 10l ®
8. r
£ [ ®
@)
o I
°® A
1001 A A
A
A A A A
A
io~1 e e
102 103 104 105
1/60

Fig. 8. Computation time in seconds versus 1/ ¢, for the case in Fig. 7.

terms and takes 2400 s to compute. The saving factor for this
case is 2667.

IV. CoNcLusioN

The series representing the free-space periodic Green’s func-
tion has been accelerated by a simple application of Shanks’s
transform. Higher order transforms are easily computed via
Wynn’s e algorithm. It has been shown that the computation
time can be reduced by a factor of a few hundreds and, in some
instances, a few thousands. This is a significant reduction in
computation time as the Green’s function is evaluated repeat-
edly in a moment method solution. The transform is very simple
to implement and is extremely efficient, as shown by the numeri-
cal results.
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Capacitance of a Circular Symmetric Model of a Via
Hole Including Finite Ground Plane Thickness

Peter Kok and Daniél De Zutter

Abstract —The capacitance of a simplified model of a via hole is
calculated based on an integral equation approach for the surface
charge density. The finite ground plane thickness is explicitly taken into
account. Numerical data are obtained for a large range of realistic
geometrical data. The relative importance of the contribution to the total
capacitance coming from the ground plane opening is explicitly evalu-
ated. It is found that the via capacitance is proportional to the square
root of its height, at least for the range of geometrical data considered in
this paper.

I. INTRODUCTION

Microstrips and striplines in printed circuit board (PCB) tech-
nology for high-frequency/high-speed controlled impedance
transport of signals have been extensively studied and modeled
[1]. This is much less the case for printed wire technology such
as Multiwire® or Microwire® [2], [3]. The parasitic effects
caused by discontinuities present in both technologies, such as
line crossings, pads, lands, and via holes, form a quite important
and still relatively new research topic [4], [5].

In this paper attention is focused on the capacitance of via
holes. Via holes provide the connection between lines located in
different layers of a multilayered board and therefore have to
cross at least one ground plane. Measurements clearly indicate
that the effect of realistic via holes is mainly capacitive.

Earlier publications [6], [7] calculate the capacitance and
inductance of vias between two different lines above the same
ground plane. In [8], capacitance and inductance are calculated
for a via hole crossing an infinitely thin ground plane. In this
paper, the capacitance of a via hole crossing a ground plane
with finite thickness is calculated. To simplify the analysis we -
have neglected the lines connected by the via.

The formulation of the problem is based on an integral
equation for the surface charges combined with an analytical
solution at the ground plane opening. The behavior of the via
hole capacitance is explicitly studied in terms of the geometrical
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Fig. 1. Geometry of the problem.

parameters which govern the problem, and the contribution
coming from the finite ground plane thickness is clearly identi-
fied.

II. FORMULATION OF THE PROBLEM

The geometry of the problem is shown in Fig. 1. As empha-
sized in the Introduction, we use a simplified model of a via hole
consisting of a perfectly conducting cylinder of finite height
2h+ d. The cylinder passes through a ground plane with finite
thickness d, pointing out of the plane at both sides over a
distance A. Its radius is ry; the radius of the ground plane
opening is r,. No wires or microstrips are attached to preserve
the circular symmetry of the problem. The entire structure is
symmetric with respect to the plane z = —d /2. It is embedded
in a homogeneous dielectric with dielectric constant €.

It is our purpose to calculate the capacitance of this via hole
model and, in particular, to determine the influence of its radius
ry, its height £, and the radius r, of the ground plane opening.
To this end, the potential at the cylinder is chosen to be V; the
potential at the ground plane is zero. The capacitance of the
cylinder is then calculated as the total surface charge density on
the cylinder divided by V. The proposed solution of the capaci-
tance problem is analytical at the passage through the ground
plane (region II) and numerical above (region I) and under the
ground plane (region III), where an integral equation is solved.
The different regions are connected through appropriate bound-
ary conditions.

We now present some details of the solution in each region.

III. ANaLYTICAL SOLUTION AT THE Passace THrouGH
THE GROUND PLANE

In region II (see Fig. 2), which is the region enclosed by the
cylindrical surface of the inner conductor ( = r;), the opening
in the ground plane (r = r,), and the planes z =0 and z =d,
the potential ¢ satisfies Poisson’s equation subject to the follow-
ing boundary conditions:

¢=0
b=V

atr=r,
atr=ry. 1

At the symmetry plane z = —d /2, the electric field has only a

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 7, JULY 1991

4 fz‘%
z=-d IRSRPRRVY R IUEPUPU IR

Fig. 2. Detail of the ground plane opening.

radial component. This is expressed by an additional condition
on ¢:

ki 0 t d 2

—= at z=——.

dz 2 @)
Owing to the circular symmetry around the z axis, the solution
of Poisson’s equation is only r- and z-dependent. Separation of
variables [9] and conditions (1) and (2) lead to

¢ r

Fo,(r,r1) (3)

> d
+ Y. A, cosh [an(z +E)

n=1

where

FOn(U’w) = JO(anU)YO(anW) - Yo(“nv)Jo(anW)~ (4)

The constants A, will be determined below. They express the
influence of regions I and III on the solution for region II. J,
and Y, are the zeroth-order Bessel functions of the first and
second kinds. a,, are the eigenvalues of the problem and can be
found as solutions of

Fo,(ry,r,) =0. (%)

IV. InTEGRAL EQUATION SOLUTION IN THE UPPER AND
Lower HALF SpACE

In regions I and III, the potential ¢ will be found as the
solution of an integral equation. Since the solutions in regions 1
and III are symmetric with respect to the plane z = —d /2, we
need only to find the solution in region L

In order to take advantage of the circular symmetry around
the z axis, the appropriate integral equation will be based on a
Green’s function, G, that exhibits the same circular symmetry.
To determine this Green’s function, we start from the static
Green’s function, G, for the homogeneous half-space bounded
by a perfectly conducting plane at z = 0:

1 {1 1
=) ©

dme\|F-al [F-a|

Gy(7,d)=—

Here, 7 represents the position vector of the observation point.
It can be written in Cartesian coordinates (x, y, z) or cylindrical
coordinates (r,8,z). @ represents the position vector of the
source point. Its Cartesian coordinates will be called (a, b, ¢), its
cylindrical coordinates (r,,0,,¢). @ is the image of & with
respect to the plane z = 0; hence its coordinates are given by
(a,b,—c¢) or (r,,0,, — ).
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Fig. 3. Relevant to the integral equation above the ground plane.

The Green’s function, G, is determined as
1 K(ky) 1 K(k,)
me Ry me R,

Q)

with K(k) the complete elliptic integral of the first kind [10] and

G(7, ru,c)=/027rG0(?,&’)d0a= -

Ri=y(z=c)+(r +71.)"

R2=‘/(z +c)2+(r —i—ra)2

2y/rr,
TR,

2y/rr, g
=% ®)

In the upper half-space, i.c., 23>0 and ¢ >0, G and ¢ satisfy
the following equations:

1
V2G=—38(r—r,)6(z—¢) (9)
r,€
Vi =0 (10)
with
19 F] 9?
Vies—e—\r,—|+—3. (11)
r, dr, ar, dc”

After multiplying (9) by ¢ and (10) by G and subtracting the
results, we apply Green’s theorem to the upper half-space,
z > 0. Because of the circular symmetry, surface integrations are
reduced to line integrations along the bold line of Fig. 3. Taking
into account that G vanishes along OF, we obtain the following
integral equation:

. G
(7)) = —Vef ras-c—(c=0) dr,

0d
G P
—e'/;lDraqS(ra,c = 0)36_‘_(6 =0)dr,

- fA L OTiG .

(12)
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The last term expresses the contribution of the surface charge
densities, with dI, = dc along AB and dl, = dr, along BC. The
presence of o in this term originates from the equivalence
3¢ /dn=— o /€ on a perfect conductor. The first term of (12)
vanishes only when the total conductor surface, ABB’'A’, would
be closed, which is not the case in this problem (the integrating
surface stops at the hole in the ground plane). The second term
of (12) expresses the presence of the hole in the ground plane.
The derivative 4 /dc is the derivative with respect to the z

» coordinate of the source point (r,,8,,c).

A second equation is needed to express the continuity of the
dielectric displacement at the transition between the upper
half-space (I) and the hole (II). As the dielectric constant
remains the same, this amounts to

Ay

¢,

The left-hand side of (13) is found by deriving (12) with respect
to z. The right-hand side is the first-order z derivative of (3).
This leads to

© d
VY A,a, sinh(anE)FOn(r,rl)

n=1

3G
= VefOAra 7770 (c=0)dr,

(14)

Equations (12) and (14) are the coupled integral equations that
have to be solved. The unknowns are the constants A4, and the
surface charge distribution, o. The attention of the reader is
drawn to the presence of the double derivatives in (14). The
difficult self-patch calculation caused by this presence will be
discussed in Section V.

V. NuMERICAL IMPLEMENTATION OF THE SOLUTION

To solve (12) and (14) we use the method of moments in
conjunction with point matching. To this end, AB and CB are
divided into, respectively, M and N equal-length intervals and o
is taken to be constant in each interval. We impose (12) at the
center of these intervals. ‘

The number of unknown coefficients A4, in (3) is restricted to
L. We impose (14) in at least L points equally spaced between
A and D. Numerical experiments show that it is better to
impose (14) in a number of points exceeding L.

The above approach leads to a discretized set of equations,
which is then solved in a least-squares sense. The discretized
version of (12) is

N-1 M-1
Z TtTi(r’Z‘)—’—rl Z (T]SJ(I‘,Z)
1=0 j=0
L
+eV Y, A, X (r.z)=VB(r,z) (15)
n=1
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with
Fir
T.(r,2) =/ r,G(c="h)dr, (16)

3

S(r.2)=[G(r,=r)de (17)

7

ra 0G d
Xn(r,z)=fr ra~a—c—(0=0)cosh a,= |Fo,(r,.r1)dr, (18)
1

rn 0G
B(r,z)= —5/0 rag(c=()) dr,

s In —
ra &)
—€e| r,—(c=0)=——s—dr,—1. (19)
]r.l dc 111—1
§)

On the right-hand side of (12), we have replaced ¢(r,,c=0)
with its value given in (3). On the left-hand side, ¢(7) was
replaced with its imposed value, V. An elementary interval along
CB is defined by [#,, 7, 1=1i(r; /N),(i + 1X#, /N)], with ¢ = h
and i=1,2,-++, N. The constant surface charge density in one
such interval is denoted by .. Line 4B is divided in M intervals
[z,,z, . 1=1ih /M), (j+ D h/M)), with r,=r; and j=
1,2,---,M. The constant surface charge density in one such
interval is denoted by o,. We impose (15) in the midpoints of
CB,ie., r,,=(r,+r,1)/2 and z = h, and in the midpoints of
AB, ie., z,,=(z, +z,,,)/2 and r =r;. The discretized version
of (14) becomes

N-1 M-1 L
Y nB(r)+r Y oQ,(r)+Ve ¥ AW,(r)=VeD(r)
i=0 i=0 n=1
(20)
with

o 3G
P,(r)=62f”‘ra—(c=h,z=0)dr,, (21)
" z

+19G
Q](r)=e2le I-a?(ra=r1, z=0)dc (22)

el

d
W,(r)=e€a,sinh (anz)FO,,(r, ry)

2
L2 9°G
+efra%(c——0,z—0)

"

d
-cosh (a”E)FOn(ra,rl)dra (23)

o G
D(r)=~¢ foraazac(c=0,z=0)dra

¥

In -2

n n 76 0, z=0)d 24
+ = = .

[ e e (€= 0 2 =0 | (24)

ry

)

We impose (20) in L' equally spaced points along 4D, i.e.,
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r=ri+(p+1/2Xr,—r))/L, with p=0,1,-++,L'—1. L' must
be larger than or equal to L.

As long as the observation point (r, z) in (16)-(19) or r in
(21)-(24) is located outside the integration interval, every inte-
gral can be calculated by straightforward numerical integration.
For so-called self-patch cases, where the observation point be-
longs to the integration interval, an integrand containing a
singularity at the observation point has to be integrated. To this
end, we determine the behavior of the integrand in the neigh-
borhood of the observation point. Subtracting this behavior from
the total integrand itself, we obtain a continuous function with-
out any singularity which can easily be integrated numerically.
The remaining term, i.e., the isolated singularity, can then be
calculated analytically. As a matter of fact, the behavior of a
function at a singularity can be found by developing the function
as a Laurent series around the singularity. The self-patch prob-
lems of the coefficients in (15) are relatively easy since the
singularity is of the first order. The problems related to the
coefficients in (20), however, are much more complicated be-
cause of the higher order of the self-patch singularities that
occur. For conciseness, no details will be given of these self-patch
calculations.

The capacitance of the via is given by

2med P d
C=——5—- Z 4mer A, sinh(an—)Fln(rl,rl)
ln—1 n=1 2
ry

T r1)22' DY den BT s
+ —) Qi+1)=+ —
L oan() @ieng Lamyy @9

where

Fln(v’w) = Yl(anv)‘,()(anw) - Jl(anv)YO(anw)‘ (26)

The first two terms are the contribution of the charges at the
hole (region II); the last two terms are the contributions of the
discretized surface charges above and under the ground plane
(regions I and III).

VI. NumERrIicaL REsuLTs

We took N=10, M =20, and L =2 to 5, depending on the
convergence. The thickness of the ground plane is d = 0.035 mm
and e, =4. This will remain unchanged in all the examples
presented in this section, except for the last example, where d
will be varied. The computation time is about 3.5 min on a
DEC-station 3100.

In Fig. 4, the capacitance of the via hole is shown as a
function of its height, %, for a via radius r; =0.2 mm and for
several values of the radius 7, of the ground plane opening. In
order to display the numerical results in a clear way, we have
divided the results over two figures. The capacitance increases
sharply for r, — r;, i.e., when the ground plane comes very close
to the via.

Fig. 5 shows the equipotential lines for the case # = 0.4 mm,
r,=0.4 mm, and r; = 0.2 mm. Only a quarter of the total cross
section is shown.

The capacitance of the geometry shown in Fig. 1 is the sum of
a contribution Cy; in region I and contributions C; and Cyy in
regions I and III. Owing to the symmetry of the problem,
C;=Cyy. Cy is the capacitance generated by the finite thick-
ness of the ground plane and is given by the first two terms of
(25). C;+ Cyy; is given by the last two terms of (25). The ratio
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Fig. 4. Via hole capacitance as a function of its height and for differ-
ent radii of the ground plane opening (d = 35 um, €, = 4, r; = 200 um),
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Fig. 7. Via hole capacitance as a function of the radius of its ground
plane opening for different heights (d = 35 um, €, = 4, r; = 200 pwm).

between C;+ Cy; and the height & gives an indication of the
degree of linearity between the capacitance component above
the ground plane and the height. In Fig. 6, this ratio is shown as
a function of A for a via radius r;=0.2 mm and for several
values of r,. From the data in Fig. 6, one can show that
C; + Cyy is approximately proportional to the square root of A.

In Fig. 7, the influence of the ground plane opening is
displayed for a constant via radius r, = 0.2 mm and for several
values of 4. In Fig. 8 we have plotted the value of Cy; for the
example of Fig. 7 (solid line). For the given range of 4 values
(h=0.1 mm — A =0.6 mm) all curves coincide within the accu-
racy of the figure, showing that Cy; is virtually independent of 7.
We examined the influence of changing the ground plane thick-
ness d on this effect. Numerical results clearly indicate that our
statement remains true if A is more than five times larger than
d. The dotted curve shows the capacitance of the hole if it were
a simple cylindrical capacitor with height d. As expected, the
difference with Cy; is not large. Fig. 9 shows the ratio between
Cy and the total capacitance C, indicating the relative impor-
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Fig. 8. Solid line: part of the via hole capacitance caused by the
ground plane opening as a function of the radius of the ground plane
opening (d = 35 pm, €, = 4, r; = 200 pm). Dotted line: capacitance of a
cylindrical capacitor with height d, inner radius = ry, outer radius =r,,
and dielectric constant = €, as a function of r,.
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Fig. 9. Ratio of the ground plane opening capacitance to the total
capacitance as a function of the radius of the ground plane opening
(d=35pm, e, =4, r; =200 pm).
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tance of the charge accumulation at the passage through the
ground plane for the example of Fig. 7.

Finally, the influence of the ground plane thickness, d, is
examined. In Fig. 10, the via capacitance is plotted as a function
of d with r, =0.2 mm and r, = 0.4 mm for several values of .

The numerical results of our simplified approach have been
compared with measurement data. For via holes in multiwire
boards, we measure 0.1 to 1.5 pF per via hole for a board with
four signal layers, four reference planes, and a thick metal core
in the middle [11]. This confirms that our results lead to realistic
values of the via capacitance.

VII. ConcLusion

Combining an integral equation method with an analytical
solution at the ground plane opening, we have calculated the
capacitance of a simplified model of a via hole, taking into
account the finite ground plane thickness. For realistic values of
the geometrical parameters, it has been shown that the capaci-
tance consists of two contributions. A first contribution comes
from the part of the via hole above and below the ground plane.
To a good accuracy this contribution is proportional to the
square root of the height of the via. The second contribution
comes from the finite thickness of the ground plane. For the
considered range of geometrical values, its value is nearly inde-
pendent of the height of the via. We have also compared this
value with the one obtained by considering the hole in the
ground plane an ideal cylindrical capacitor and found that the
difference between the two values was rather small.
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