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Fig. 8. Computation time in seconds versus I/cC for the case in Fig. 7.

terms and takes 2400 s to compute. The saving factor for this

case is 2667.

IV. CONCLUSION

The series representing the free-space periodic Green’s func-

tion has been accelerated by a simple application of Shanks’s

transform. Higher order transforms are easily computed via

Wynn’s E algorithm. It has been shown that the computation

time can be reduced by a factor of a few hundreds and, in some

instances, a few thousands. This is a significant reduction in

computation time as the Green’s function is evaluated repeat-

edly in a moment method solution. The transform is very simple

to implement and is extremely efficient, as shown by the numeri-

cal results.
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Capacitance of a Circular Symmetric Model of a Via

Hole Including Finite Ground Plane Thickness

Peter Kok and Daniel De Zutter

Abstract —The capacitance of a simplified model of a via hole is

calculated based on an integral equation approach for the surface
charge density. The finite grouud plane thickness is explicitly taken into

account. Nnmerical data are obtained for a large range of realistic

geometrical data. The relative importance of the contribution to the total

capacitance coming from the ground plane opening is explicitly evalu-

ated. It is found that the via capacitance is proportional to the square
root of its height, at least for the range of geometrical data considered in
this paper.

I. INTRODUCTION

Microstrips and striplines in printed circuit board (PCB) tech-

nology for high-frequency/high-speed controlled impedance

transport of signals have been extensively studied and modeled

[11. This is much less the case for printed wire technology such

as Multiwire @ or Microwire @ [2], [3]. The parasitic effects

caused by discontinuities present in both technologies, such as

line crossings, pads, lands, and via holes, form a quite important

and still relatively new research topic [4], [5].

In this paper attention is focused on the capacitance of via

holes. Via holes provide the connection between lines located in

different layers of a multilayered board and therefore have to

cross at least one ground plane. Measurements clearly indicate

that the effect of realistic via holes is mainly capacitive.

Earlier publications [6], [7] calculate the capacitance and

inductance of vias between two different lines above the same

ground plane. In [8], capacitance and inductance are calculated

for a via hole crossing an infinitely thin ground plane. In this

paper, the capacitance of a via hole crossing a ground plane

with finite thickness is calculated. To simplify the analysis we

have neglected the lines connected by the via.

The formulation of the problem is based on an integral

equation for the surface charges combined with an analytical

solution at the ground plane opening. The behavior of the via

hole capacitance is explicitly studied in terms of the geometrical
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Fig. 1. Geometry of the problem.

parameters which govern the problem, and the contribution

coming from the finite ground plane thickness is clearly identi-

fied.

11. FORMULATION OF THE PROBLEM

The geometry of the problem is shown in Fig, 1. As empha-

sized in the Introduction, we use a simplified model of a via hole

consisting of a perfectly conducting cylinder of finite height

2h + d. The cylinder passes through a ground plane with finite

thickness d, pointing out of the plane at both sides over a

distance h. Its radius is rl; the radius of the ground plane

opening is rz. No wires or microstrips are attached to preserve

the circular symmetry of the problem. The entire structure is

symmetric with respect to the plane z = – d/2. It is embedded

in a homogeneous dielectric with dielectric constant e.

It is our purpose to calculate the capacitance of this via hole

model and, in particular, to determine the influence of its radius

rl, its height h, and the radius rz of the ground plane opening.

To this end, the potential at the cylinder is chosen to be V, the

potential at the ground plane is zero. The capacitance of the

cylinder is then calculated as the total surface charge density on

the cylinder divided by V. The proposed solution of the capaci-

tance problem is analytical at the passage through the ground

plane (region II) and numerical above (region I) and under the

ground plane (region III), where an integral equation is solved.

The different regions are connected through appropriate bound-

ary conditions.

We now present some details of the solution in each region.

III. ANALYTICAL SOLUTION AT THE PASSAGE THROUGH

THE GROUND PLANE

In region II (see Fig. 2), which is the region enclosed by the

cylindrical surface of the inner conductor (r = rl), the opening

in the ground plane (r = rz), and the planes z = O and z = d,

the potential @ satisfies Poisson’s equation subject to the follow-

ing boundary conditions:

+=() atr=r~

~=v at r=rl. (1)

At the symmetry plane z = – d \2, the electric field has only a

Fig. 2. Detail of the ground plane opening.

radial component. This is expressed by an additional condition

on ~:

i?c$ d
~=o at==–—,

2
(2)

Owing to the circular symmetry around the z axis, the solution

of Poisson’s equation is only r- and z-dependent. Separation of

variables [9] and conditions”(1) and (2) le”ad to

T

rz

where

FOJLJ,W) = Jo(aHu)Yo(anw) – Yo(anu)Jo(anw).

The constants zI. will be determined below. They express

(3)

(4)

the

influence of regio”ns I and III on the solution for region II. .70

and YO are the zeroth-order Bessel functions of the first and

second kinds. a,, are the eigenvalues of the problem and can be

found as solutions of

FOfl(rl, r2)=0. (5)

IV. INTEGRAL EQUATION SOLUTION IN THE UPPER AND

LOWER HALF SPACE

In regions I and III, the potential @ will be found as the

solution of an integral equation. Since the solutions in regions I

and III are symmetric with respect to the plane z = – d/2, we

need only to find the solution in region I.

In order to take advantage of the circular symmetry around

the z axis, the appropriate integral equation will be based on a

Green’s function, G, that exhibits the same circular symmetry.

To determine this Green’s function, we start from the static

Green’s function, GO, for the homogeneous half-space bounded

by a perfectly conducting plane at z = O:

1 ( 1 1
GO(F, Z)=– — — — )47T6 17–71 – 1~–dfl

(6)

Here, F represents the position vector of the observation point.

It can be written in Cartesian coordinates (x, y, z) or cylindrical

coordinates (r, 19,z). ii’ represents the position vector of the

source point. Its Cartesian coordinates will be called (a, b, c), its

cylindrical coordinates (ra, 9., c). d is the image of d with

respect to the plane z = O; hence its coordinates are given by

(a, b, – c) or (ra, Oa, – c).
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Fig. 3. Relevant to the integral equation above the ground plane.

The Green’s function, G, is determined as

G(F, ra,c)=~2”GO(7,Z) d0a= - ~~+ ~ ‘~’)
‘n-E 1 2

(7)

with K(k) the complete elliptic integral of the first kind [10] and

l?, =j(z-c)’+(r+ra)’

R2=~(z+c)2+(r+ra)2

(8)

In the upper half-space, i.e., z >0 and c >0, G and ~ satisfy

the following equations:

(9)

v’+ =() (lo)

with

(11)

After multiplying (9) by d and (10) by G and subtracting the

results, we apply Green’s theorem to the upper half-space,

z >0. Because of the circular symmetry, surface integrations are

reduced to line integrations along the bold line of Fig. 3. Taking

into account that G vanishes along OE, we obtain the following

integral equation:

The last term expresses the contribution of the surface charge

densities, with dla = dc along AB and dla = dra along BC. The

presence of m in this term originates from the equivalence

@\&z = – U/C on a perfect conductor. The first term of (12)

vanishes only when the total conductor surface, ABB’A’, would

be closed, which is not the case in this problem (the integrating

surface stops at the hole in the ground plane). The second term

of (12) expresses the presence of the hole in the ground plane.

The derivative d/de is the derivative with respect to the z

coordinate of the source point (r., Oa,c).

A second equation is needed to express the continuity of the

dielectric displacement at the transition between the upper

half-space (I) and the hole (II). As the dielectric constant

remains the same, this amounts to

:(z=o+)=g(z=o-). (13)

The left-hand side of (13) is found by deriving (12) with respect

to z. The right-hand side is the first-order z derivative of (3).

This leads to

d

()
– V ~ Aria. sinh a.y Fon(r, rl)

~=1

L?2G
—(c = O) dr.

= ‘eioAra az&

+.~Dr.4(r.,c=o)~(c=o)dr.

J
dG

+ ra—udla.
ABC dz

(14)

Equations (12) and (14) are the coupled integral equations that

have to be solved, The unknowns are the constants An and the

surface charge distribution, u. The attention of the reader is

drawn to the presence of the double derivatives in (14). The

difficult self-patch calculation caused by this presence will be

discussed in Section V.

V. NUMERICAL IMPLEMENTATION OF THE SOLUTION

To solve (12) and (14) we use the method of moments in

conjunction with point matching. To this end, AB and CB are

divided into, respectively, M and N equal-length intervals and u

is taken to be constant in each interval. We impose (12) at the

center of these intervals.

The number of unknown coefficients A. in (3) is restricted to

L. We impose (14) in at least L points equally spaced between

A and D. Numerical experiments show that it is better to

impose (14) in a number of points exceeding L.

The above approach leads to a discretized set of equations,

which is then solved in a least-squares sense. The discretized

version of (12) is

N–1 M–1

~ r, Ti(r, z)+ rl ~ qSJ(r, z)
C=o j=(l

—J crraGdla.
ABC

(12) +6V fi AHX.(r, z) =VB(r, z) (15)
~=1
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with

T,(r, z)=~”’+lraG(c =h)dra (16)
r,

S,(r, z)=~~+’G(r. =rl)dc (17)

Xn(r, z)=/r2ra~(c=O)cosh ()CY,,~~0.(~., ~1)dr. (W
rl

B(r, z) = –e/’’ra~(c=O)dra
o

r
in —

-.]r’ra:(c=o)+~ ra-l. (19)
T1 in —

On the right-hand side of (12), we have replaced 4( r., c = O)

with its value given in (3). On the left-hand side, ~(~) was

replaced with its imposed value, V. An elementary interval along

CB is defined by [r,, r,+l]=[i(rl /iV), (i + l)(rl /N)l, with c = h

and i=l,2,. . . , N. The constant surface charge density in one

such interval is denoted by T,. Line AB is divided in M intervals

[z,, z,+II = [j(lI/A4), (j + l)(h\M)l, with r. = rl and j =
1,2,. ... M. The constant surface charge density in one such

interval is denoted by u,. We impose (15) in the midpoints of

CB, i.e., r,~ = (r, + r,+l)/2 and z = h, and in the midpoints of

AB, i.e., Zlm = (z, + Z, + ~)/2 and r = rl. The discretized version

of (14) becomes

N–1 M–1 L

i=lJ j=o ~=1

with

P,(r) =~’f’’+’ra~(c=h, z= O)dra
~,

QJ(r)=~2~z’+’~( ra=rl, z= O)dc

~J

d

()
W.(r) = ●a,l sinh a.z Fo.(r, rl)

J

r, t?2G
+ ez ru -----( C= O, Z=O)

T1

d

()
.cosh anj Fon(ra, rl) dra

[

132G
D(r)= –.s2 ~r’ram(c=O, z =O)dra

(20)

(21)

(22)

(23)

We impose (20) in L’ equally spaced points along AD, i.e.,

r= rl+(p+l/2)(r2 –rI)/L’, with p= 0,1,, . ., L’–l. L’ must

be larger than or equal to L.

As long as the observation point (r, z) in (16)–(19) or r in

(21)-(24) is located outside the integration interval, every inte-

gral can be calculated by straightforward numerical integration.

For so-called self-patch cases, where the observation point be-

longs to the integration interval, an integrand containing a

singularity at the observation point has to be integrated. To this

end, we determine the behavior of the integrand in the neigh-

borhood of the observation point. Subtracting this behavior from

the total integrand itself, we obtain a continuous function with-

out any singularity which can easily be integrated numerically.

The remaining term, i.e., the isolated singularity, can then be

calculated analytically. As a matter of fact, the behavior of a

function at a singularity can be found by developing the function

as a Laurent series around the singularity. The self-patch prob-

lems of the coefficients in (15) are relatively easy since the

singularity is of the first order. The problems related to the

coefficients in (20), however, are much more complicated be-

cause of the higher order of the self-patch singularities that

occur. For conciseness, no details will be given of these self-patch

calculations.

The capacitance of the via is given by

where

The first two terms are the contribution of the charges at the

hole (region II); the last two terms are the contributions of the

discretized surface charges above and under the ground plane

(regions I and 111).

VI. NUMERICAL RESULTS

We took N= 10, M = 20, and L = 2 to 5, depending on the

convergence. The thickness of the ground plane is d = 0.035 mm

and ●, = 4. This will remain unchanged in all the examples

presented in this section, except for the last example, where d

will be varied. The computation time is about 3.5 min on a

DEC-station 3100.

In Fig. 4, the capacitance of the via hole is shown as a

function of its height, h, for a via radius rl = 0.2 mm and for

several values of the radius rz of the ground plane opening. In

order to display the numerical results in a clear way, we have

divided the results over two figures. The capacitance increases

sharply for rz A rl, i.e., when the ground plane comes very close

to the via.

Fig. 5 shows the equipotential lines for the case h = 0.4 mm,

rz = 0.4 mm, and 71 = 0.2 mm. Only a quarter of the total cross
section is shown.

The capacitance of the geometry shown in Fig. 1 is the sum of

a contribution CII in region II and contributions CI and CIII in

regions I and 111. Owing to the symmetry of the problem,

C1 = C1ll. C1l is the capacitance generated by the finite thick-

ness of the ground plane and is given by the first two terms of

(25). C,+ CII1 is given by the last two terms of (25). The ratio
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Fig. 4. Via hole capacitance as a function of its height and for differ-
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Fig. 7. Via hole capacitance as a function of the radius of its ground
plane opening for different heights (d= 35 #m, ●,= 4, rl = 200 pm).

between CI + CIII and the height h gives an indication of the

degree of linearity between the capacitance component above

the ground plane and the height. In Fig. 6, this ratio is shown as

a function of h for a via radius rl = 0.2 mm and for several

values of rz. From the data in Fig. 6, one can show that

CI + CIII is approximately proportional to the square root of h.

In Fig. 7, the influence of the ground plane opening is

displayed for a constant via radius rl = 0.2 mm and for several

values of h. In Fig. 8 we have plotted the value of CII for the

example of Fig. 7 (solid line). For the given range of h values

(h= 0.1 mm ~ h = 0.6 mm) all curves coincide within the accu-
racy of the figure, showing that CII is virtually independent of h.

We examined the influence of changing the ground plane thick-

ness d cm this effect. Numerical results clearly indicate that our

statement remains true if h is more than five times larger than

d. The dotted curve shows the capacitance of the hole if it were

a simple cylindrical capacitor with height d. As expected, the

difference with CII is not large. Fig. 9 shows the ratio between

CII and the total capacitance C, indicating the relative impor-
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ground plane opening as a function of the radius of the ground plane
opening (d = 35 Km, e, = 4, rl = 200 pm). Dotted line: capacitance of a
cylindrical capacitor with height d, inner radius = rl, outer radius = rz,
and dielectric constant = e, as a function of r2.
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Fig. 10. Via hole capacitance as a function of the ground plane thick-

ness for different heights (E, = 4, rl = 200 ~m, rz = 400 pm).

tance of the charge accumulation at the passage through the

ground plane for the example of Fig. 7.

Finally, the influence of the ground plane thickness, d, is

examined. In Fig. 10, the via capacitance is plotted as a function

of d with r-l= 0.2 mm and rz = 0.4 mm for several values of h.

The numerical results of our simplified approach have been

compared with measurement data. For via holes in multiwire

boards, we measure 0.1 to 1.5 pF per via hole for a board with

four signal layers, four reference planes, and a thick metal core

in the middle [11]. This confirms that our results lead to realistic

values of the via capacitance.

VII. CONCLUSION

Combining an integral equation method with an analytical

solution at the ground plane opening, we have calculated the

capacitance of a simplified model of a via hole, taking into

account the finite ground plane thickness. For realistic values of

the geometrical parameters, it has been shown that the capaci-

tance consists of two contributions. A first contribution comes

from the part of the via hole above and below the ground plane.

To a good accuracy this contribution is proportional to the

square root of the height of the via. The second contribution

comes from the finite thickness of the ground plane. For the

considered range of geometrical values, its value is nearly inde-

pendent of the height of the via. We have also compared this

value with the one obtained by considering the hole in the

ground plane an ideal cylindrical capacitor and found that the

difference between the two values was rather small.
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